当前位置:首页> 正文

Python之可迭代对象、迭代器、生成器

Python之可迭代对象、迭代器、生成器

一、概念描述

可迭代对象就是可以迭代的对象,我们可以通过内置的iter函数获取其迭代器,可迭代对象内部需要实现__iter__函数来返回其关联的迭代器;

迭代器是负责具体数据的逐个遍历的,其通过实现__next__函数得以逐个的访问关联的数据元素;同时通过实现__iter__来实现对可迭代对象的兼容;

生成器是一种迭代器模式,其实现了数据的惰性生成,即只有使用的时候才会生成对应的元素;

二、序列的可迭代性

python内置的序列可以通过for进行迭代,解释器会调用iter函数获取序列的迭代器,由于iter函数兼容序列实现的__getitem__,会自动创建一个迭代器;

迭代器的

import refrom dis import disclass WordAnalyzer:    reg_word = re.compile('\w+')    def __init__(self, text):        self.words = self.__class__.reg_word.findall(text)    def __getitem__(self, index):        return self.words[index]def iter_word_analyzer():    wa = WordAnalyzer('this is mango word analyzer')    print('start for wa')    for w in wa:        print(w)    print('start while wa_iter')    wa_iter = iter(wa)    while True:        try:            print(next(wa_iter))        except StopIteration as e:            break;iter_word_analyzer()dis(iter_word_analyzer)# start for wa# this# is# mango# word# analyzer# start while wa_iter# this# is# mango# word# analyzer#  15           0 LOAD_GLOBAL              0 (WordAnalyzer)#               2 LOAD_CONST               1 ('this is mango word analyzer')#               4 CALL_FUNCTION            1#               6 STORE_FAST               0 (wa)# #  16           8 LOAD_GLOBAL              1 (print)#              10 LOAD_CONST               2 ('start for wa')#              12 CALL_FUNCTION            1#              14 POP_TOP# #  17          16 LOAD_FAST                0 (wa)#              18 GET_ITER#         >>   20 FOR_ITER                12 (to 34)#              22 STORE_FAST               1 (w)# #  18          24 LOAD_GLOBAL              1 (print)#              26 LOAD_FAST                1 (w)#              28 CALL_FUNCTION            1#              30 POP_TOP#              32 JUMP_ABSOLUTE           20# #  20     >>   34 LOAD_GLOBAL              1 (print)#              36 LOAD_CONST               3 ('start while wa_iter')#              38 CALL_FUNCTION            1#              40 POP_TOP# #  21          42 LOAD_GLOBAL              2 (iter)#              44 LOAD_FAST                0 (wa)#              46 CALL_FUNCTION            1#              48 STORE_FAST               2 (wa_iter)# #  23     >>   50 SETUP_FINALLY           16 (to 68)# #  24          52 LOAD_GLOBAL              1 (print)#              54 LOAD_GLOBAL              3 (next)#              56 LOAD_FAST                2 (wa_iter)#              58 CALL_FUNCTION            1#              60 CALL_FUNCTION            1#              62 POP_TOP#              64 POP_BLOCK#              66 JUMP_ABSOLUTE           50# #  25     >>   68 DUP_TOP#              70 LOAD_GLOBAL              4 (StopIteration)#              72 JUMP_IF_NOT_EXC_MATCH   114#              74 POP_TOP#              76 STORE_FAST               3 (e)#              78 POP_TOP#              80 SETUP_FINALLY           24 (to 106)# #  26          82 POP_BLOCK#              84 POP_EXCEPT#              86 LOAD_CONST               0 (None)#              88 STORE_FAST               3 (e)#              90 DELETE_FAST              3 (e)#              92 JUMP_ABSOLUTE          118#              94 POP_BLOCK#              96 POP_EXCEPT#              98 LOAD_CONST               0 (None)#             100 STORE_FAST               3 (e)#             102 DELETE_FAST              3 (e)#             104 JUMP_ABSOLUTE           50#         >>  106 LOAD_CONST               0 (None)#             108 STORE_FAST               3 (e)#             110 DELETE_FAST              3 (e)#             112 RERAISE#         >>  114 RERAISE#             116 JUMP_ABSOLUTE           50#         >>  118 LOAD_CONST               0 (None)#             120 RETURN_VALUE

三、经典的迭代器模式

标准的迭代器需要实现两个接口方法,一个可以获取下一个元素的__next__方法和直接返回self的__iter__方法;

迭代器迭代完所有的元素的时候会抛出StopIteration异常,但是python内置的for、列表推到、元组拆包等会自动处理这个异常;

实现__iter__主要为了方便使用迭代器,这样就可以最大限度的方便使用迭代器;

迭代器只能迭代一次,如果需要再次迭代就需要再次调用iter方法获取新的迭代器,这就要求每个迭代器维护自己的内部状态,即一个对象不能既是可迭代对象同时也是迭代器;

从经典的面向对象设计模式来看,可迭代对象可以随时生成自己关联的迭代器,而迭代器负责具体的元素的迭代处理;

import refrom dis import disclass WordAnalyzer:    reg_word = re.compile('\w+')    def __init__(self, text):        self.words = self.__class__.reg_word.findall(text)    def __iter__(self):        return WordAnalyzerIterator(self.words)class WordAnalyzerIterator:    def __init__(self, words):        self.words = words        self.index = 0    def __iter__(self):        return self;    def __next__(self):        try:            word = self.words[self.index]        except IndexError:            raise StopIteration()        self.index +=1        return worddef iter_word_analyzer():    wa = WordAnalyzer('this is mango word analyzer')    print('start for wa')    for w in wa:        print(w)    print('start while wa_iter')    wa_iter = iter(wa)    while True:        try:            print(next(wa_iter))        except StopIteration as e:            break;iter_word_analyzer()# start for wa# this# is# mango# word# analyzer# start while wa_iter# this# is# mango# word# analyzer

四、生成器也是迭代器

生成器是调用生成器函数生成的,生成器函数是含有yield的工厂函数;

生成器本身就是迭代器,其支持使用next函数遍历生成器,同时遍历完也会抛出StopIteration异常;

生成器执行的时候会在yield语句的地方暂停,并返回yield右边的表达式的值;

def gen_func():    print('first yield')    yield 'first'    print('second yield')    yield 'second'print(gen_func)g = gen_func()print(g)for val in g:    print(val)g = gen_func()print(next(g))print(next(g))print(next(g))# <function gen_func at 0x7f1198175040># <generator object gen_func at 0x7f1197fb6cf0># first yield# first# second yield# second# first yield# first# second yield# second# StopIteration

我们可以将__iter__作为生成器函数

import refrom dis import disclass WordAnalyzer:    reg_word = re.compile('\w+')    def __init__(self, text):        self.words = self.__class__.reg_word.findall(text)    def __iter__(self):        for word in self.words:            yield worddef iter_word_analyzer():    wa = WordAnalyzer('this is mango word analyzer')    print('start for wa')    for w in wa:        print(w)    print('start while wa_iter')    wa_iter = iter(wa)    while True:        try:            print(next(wa_iter))        except StopIteration as e:            break;iter_word_analyzer()# start for wa# this# is# mango# word# analyzer# start while wa_iter# this# is# mango# word# analyzer

五、实现惰性迭代器

迭代器的一大亮点就是通过__next__来实现逐个元素的遍历,这个大数据容器的遍历带来了可能性;

我们以前的实现在初始化的时候,直接调用re.findall得到了所有的序列元素,并不是一个很好的实现;我们可以通过re.finditer来在遍历的时候得到数据;

import refrom dis import disclass WordAnalyzer:    reg_word = re.compile('\w+')    def __init__(self, text):        # self.words = self.__class__.reg_word.findall(text)        self.text = text    def __iter__(self):        g = self.__class__.reg_word.finditer(self.text)        print(g)        for match in g:            yield match.group()def iter_word_analyzer():    wa = WordAnalyzer('this is mango word analyzer')    print('start for wa')    for w in wa:        print(w)    print('start while wa_iter')    wa_iter = iter(wa)    wa_iter1= iter(wa)    while True:        try:            print(next(wa_iter))        except StopIteration as e:            break;iter_word_analyzer()# start for wa# <callable_iterator object at 0x7feed103e040># this# is# mango# word# analyzer# start while wa_iter# <callable_iterator object at 0x7feed103e040># this# is# mango# word# analyzer

六、使用生成器表达式简化惰性迭代器

生成器表达式是生成器的声明性定义,与列表推到的语法类似,只是生成元素是惰性的;

def gen_func():    print('first yield')    yield 'first'    print('second yield')    yield 'second'l = [x for x in gen_func()]for x in l:    print(x)print()ge = (x for x in gen_func())print(ge)for x in ge:    print(x)# first yield# second yield# first# second## <generator object <genexpr> at 0x7f78ff5dfd60># first yield# first# second yield# second

使用生成器表达式实现word analyzer

import refrom dis import disclass WordAnalyzer:    reg_word = re.compile('\w+')    def __init__(self, text):        # self.words = self.__class__.reg_word.findall(text)        self.text = text    def __iter__(self):        # g = self.__class__.reg_word.finditer(self.text)        # print(g)        # for match in g:        #     yield match.group()        ge = (match.group() for match in self.__class__.reg_word.finditer(self.text))        print(ge)        return gedef iter_word_analyzer():    wa = WordAnalyzer('this is mango word analyzer')    print('start for wa')    for w in wa:        print(w)    print('start while wa_iter')    wa_iter = iter(wa)    while True:        try:            print(next(wa_iter))        except StopIteration as e:            break;iter_word_analyzer()# start for wa# <generator object WordAnalyzer.__iter__.<locals>.<genexpr> at 0x7f4178189200># this# is# mango# word# analyzer# start while wa_iter# <generator object WordAnalyzer.__iter__.<locals>.<genexpr> at 0x7f4178189200># this# is# mango# word# analyzer
展开全文阅读

相关内容